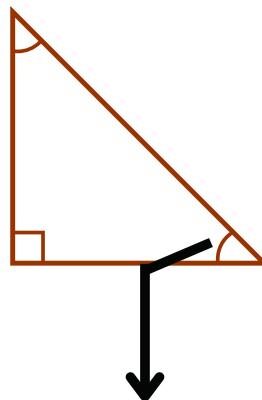
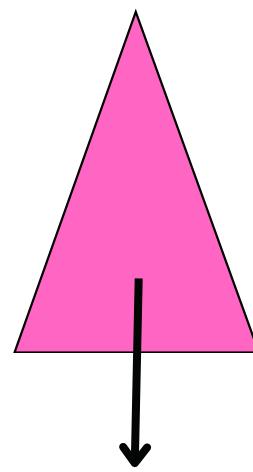

TRIGONOMETRY – GCSE MATHS

CONTENTS:


1. Introduction.
2. Basics of Trigonometry.
3. Pythagoras' Theorem.
4. Understanding the concepts of Sin, Cos, Tan.
5. Finding Unknown Sides and Unknown Angles.
6. Angles of Elevation and Depression.
7. Triangle Exact values.
8. Three Solved Examples.

1. Introduction


- Trigonometry is all about **Triangles**.
- It is a branch of mathematics that deals with the relationships between the angles and sides of triangles—especially **right-angled triangles**.

Side is missing??

Angle is missing??

Finding the area??

TRIGONOMETRY – GCSE MATHS

2. Basics of Trigonometry.

- Trigonometry is the study of the relationship between the **angles** and **sides of triangles**.

Why do we use it?

To find:

- How long a side is
- What an angle is
 - when we have the values of some other parts of the triangle.

The Three main Functions:

In a right-angled triangle:

- \sin (as: “sine”)
- \cos (as: “cosine”)
- \tan (as: “tangent”)

They are simply the ratios (fractions) of the given triangle’s sides.

All about Triangles

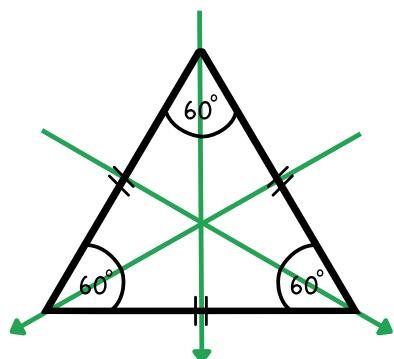
Triangles are three-sided polygons with several important properties. Here are some key properties of triangles:

1. Basic Properties

- A triangle has **three sides**, **three vertices**, and **three angles**.
- The sum of the interior angles is always **180°**.
- The sum of the exterior angles is always **360°**.
- Side Length Rule (Triangle Inequality Theorem)

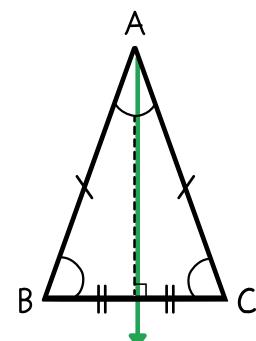
The sum of any two sides must be greater than the third side:

$$a + b > c, b + c > a, a + c > b$$

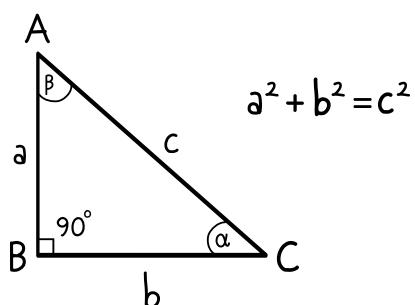

TRIGONOMETRY – GCSE MATHS

Types of Triangles

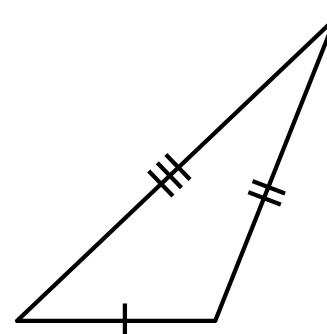
There are mainly **four** types of Triangles that can be distinguished uniquely.


Let us understand about them in detail:

- **Equilateral Triangle**


An Equilateral Triangle is a triangle in which all the three sides of the triangle are of the same length.

- **Isosceles Triangle**


An Isosceles triangle is a triangle that has two sides of equal length. Along with that, the angles opposite those equal sides are also equal.

- **Right Angled Triangle**

A Right-Angled triangle (also called a right triangle) is a triangle that has one angle exactly equal to 90° .

- **Scalene Triangle**

A scalene triangle is a triangle in which all three sides and all three angles are different.

TRIGONOMETRY – GCSE MATHS

3. Pythagoras' Theorem

$$c^2 = a^2 + b^2$$

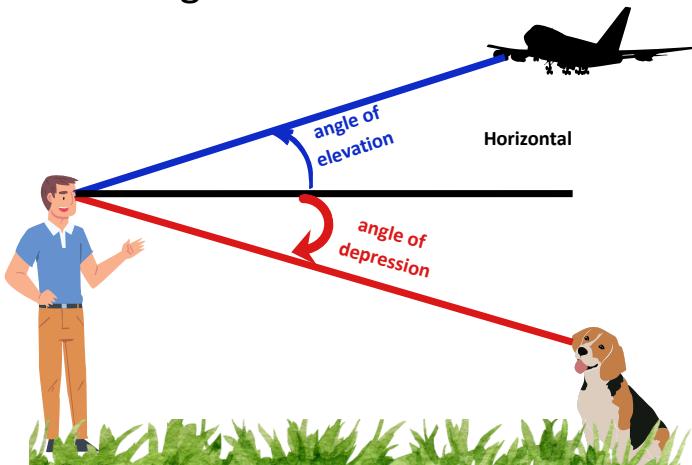
- Click here for more detailed information

4. Understanding Sin, Cos, Tan

$$\sin(x) = \frac{P}{H} \quad \cos(x) = \frac{B}{H} \quad \tan(x) = \frac{P}{B}$$

- Click here for more detailed information

5. Finding Unknown Sides and Unknown Angles


- Click here for more detailed information

6. Angles of Elevation and Depression.

• Definitions

Angle of Elevation: The angle formed between the horizontal line (eye level) and the line of sight when an observer looks upwards at an object.

Angle of Depression: The angle formed between the horizontal line (eye level) and the line of sight when an observer looks downwards at an object.

TRIGONOMETRY – GCSE MATHS

Angle of Elevation: The angle formed between the horizontal line (eye level) and the line of sight when an observer looks downwards at an object.

- **Key Points**

1. Both angles are measured from the **horizontal** (eye level).
2. They are always between **0° and 90°**.
3. The angle of elevation and depression are **congruent (equal)** when the observer and object are at the same horizontal level (i.e., in symmetric positions).

- **Real Life Applications**

1. **Angle of Elevation:** Used in measuring heights of buildings, mountains, or trees.
2. **Angle of Depression:** Used in aviation (pilots landing planes), navigation, or determining distances between objects at different heights.

- **Step by Step Procedure**

Step 1: Draw a Diagram

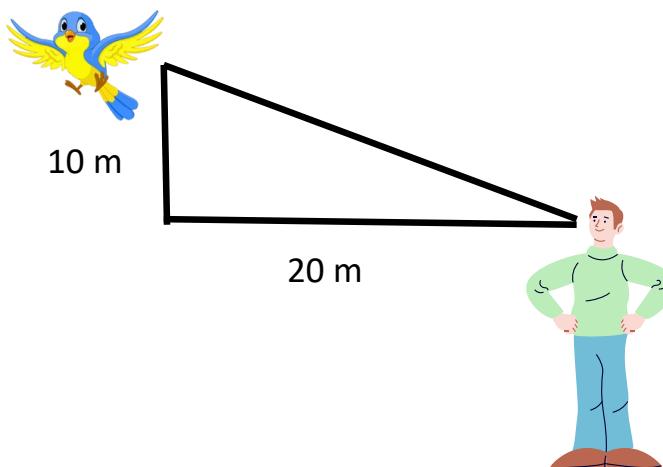
Step 2: Identify Known & Unknown Values

Step 3: Choose the Right Trigonometric Ratio

Step 4: Solve for the Unknown

Step 5: Check for Angle of Depression

TRIGONOMETRY – GCSE MATHS


Example:

"A bird sits on a tree 10m high. A man 20 m away looks up at the bird."

Solution:

Step 1: Draw a Diagram

- Sketch the scenario based on the problem statement.
- Label:
 - The observer's eye level (horizontal line).
 - The line of sight (angle of elevation or depression).
 - The height (vertical side) and distance (horizontal side).

Step 2: Identify Known & Unknown Values

- Given:
 - Distance from observer to object (adjacent side).
 - Height (opposite side).
 - Angle (if given).
- Find:
 - The missing side or angle.

Example:

- Given:
 - **Distance (adjacent) = 10m**
 - **Height (opposite) = 15m**
- Find: Angle of elevation (θ).

TRIGONOMETRY – GCSE MATHS

Step 3: Choose the Right Trigonometric Ratio

- SOH-CAH-TOA helps decide which ratio to use:
 - Sine ($\sin\theta$) = Opposite / Hypotenuse
 - Cosine ($\cos\theta$) = Adjacent / Hypotenuse
 - Tangent ($\tan\theta$) = Opposite / Adjacent

In our example:

- We have opposite (height) = 10m and adjacent (distance) = 20m.
- Use tangent:

$$\bullet \tan\theta = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{10}{20} = 0.5$$

Step 4: Solve for the Unknown

- If finding an angle, use inverse trig functions (\tan^{-1} , \sin^{-1} , \cos^{-1}).
- If finding a side, rearrange the formula.

Example (continued):

- To find θ :
- $\theta = \tan^{-1}(0.5) \approx 26.57^\circ$

Step 5: Check for Angle of Depression

- If the problem involves looking downward, the steps are the same, but the angle is measured below the horizontal.
- **Key Fact:**

Angle of elevation from point A to B = Angle of depression from B to A (they are equal due to alternate angles).

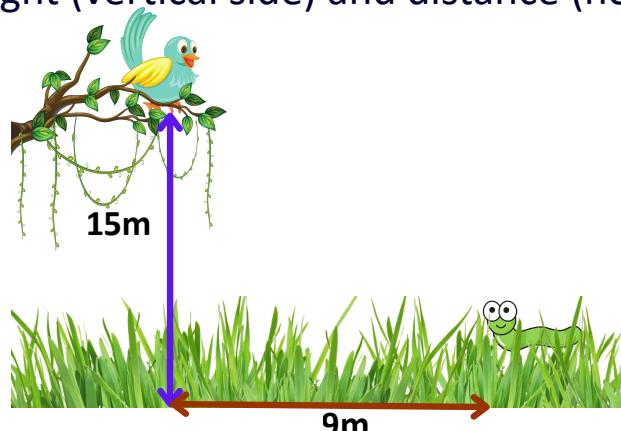
Therefore,

$$\text{Angle of Elevation} = \text{Angle of Depression}$$

Hence,

$$\text{Angle of depression} \approx 26.57^\circ$$

TRIGONOMETRY – GCSE MATHS


Example:

A bird is perched on a 15-meter-high tree. It spots a worm on the ground 9 meters away from the base of the tree. What is the angle of depression from the bird to the worm?

Solution:

Step 1: Draw a Diagram

- Sketch the scenario based on the problem statement.
- Label:
 - The observer's eye level (horizontal line).
 - The line of sight (angle of elevation or depression).
 - The height (vertical side) and distance (horizontal side).

Step 2: Identify Known & Unknown Values

- Given:
 - Distance from observer to object (adjacent side).
 - Height (opposite side).
 - Angle (if given).
- Find:
 - The missing side or angle.

Example:

- Given:
 - Distance (adjacent) = 9m
 - Height (opposite) = 15m
- Find: Angle of depression(θ).

TRIGONOMETRY – GCSE MATHS

Step 3: Choose the Right Trigonometric Ratio

- SOH-CAH-TOA helps decide which ratio to use:
 - Sine ($\sin\theta$) = Opposite / Hypotenuse
 - Cosine ($\cos\theta$) = Adjacent / Hypotenuse
 - Tangent ($\tan\theta$) = Opposite / Adjacent

In our example:

- We have opposite (height) = 15m and adjacent (distance) = 9m.
- Use tangent:

$$\bullet \tan\theta = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{15}{9} = 1.67$$

Step 4: Solve for the Unknown

- If finding an angle, use inverse trig functions (\tan^{-1} , \sin^{-1} , \cos^{-1}).
- If finding a side, rearrange the formula.

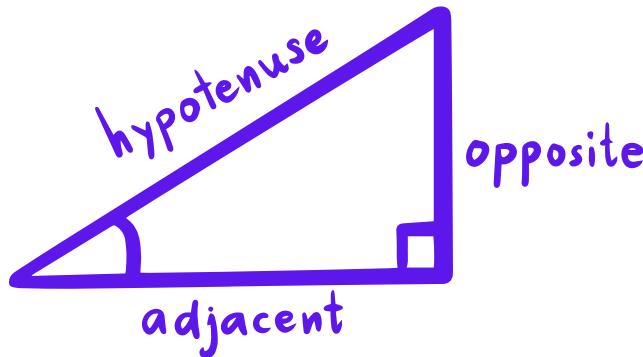
Example (continued):

- To find θ :
- $\theta = \tan^{-1}(1.67) \approx 59.3^\circ$

Step 5: Check for Angle of Elevation

- If the problem involves looking downward, the steps are the same, but the angle is measured below the horizontal.
- Key Fact:
Angle of elevation from point A to B = Angle of depression from B to A (they are equal due to alternate angles).

Therefore,


$$\text{Angle of Elevation} = \text{Angle of Depression}$$

Hence,

$$\text{Angle of depression} \approx 59.3^\circ$$

TRIGONOMETRY – GCSE MATHS

8. Triangle Exact Values

Let us understand about some important ratios in brief:

- **Sine (sin θ) = Opposite / Hypotenuse**
- **Cosine (cos θ) = Adjacent / Hypotenuse**
- **Tangent (tan θ) = Opposite / Adjacent**

where the terms are denoted as:

1. **Opposite** = side opposite the angle
2. **Adjacent** = side next to the angle (not the hypotenuse)
3. **Hypotenuse** = the longest side (opposite the 90° angle)

θ (degrees)	$\sin(\theta)$	$\cos(\theta)$	$\tan(\theta)$
0°	0	1	0
30°	1/2	$\sqrt{3}/2$	$1/\sqrt{3} \approx 0.577$
45°	$\sqrt{2}/2$	$\sqrt{2}/2$	1
60°	$\sqrt{3}/2$	1/2	$\sqrt{3} \approx 1.732$
90°	1	0	undefined

TRIGONOMETRY – GCSE MATHS

Tip: We have to summarize this table given above to solve each of the question accurately

Examples

Problem: In a right triangle, the angle is 30° and the adjacent side is 6 units. Find the opposite side.

Solution:

$$\tan 30^\circ = \frac{\text{Opposite}}{\text{Adjacent}}$$

$$\frac{1}{\sqrt{3}} = \frac{x}{6}$$

$$x = \frac{6}{\sqrt{3}}$$

$$x = \sqrt[2]{3}$$

So, therefore we got an answer to our question that is:

$$x = \sqrt[2]{3}$$

TRIGONOMETRY – GCSE MATHS

Problem: In a right triangle, the angle is 30° and the opposite side is 9 units. Find the adjacent side.

Solution:

Given:

Angle = 30°

Adjacent side = 6 units

We know that

$$\tan 30^\circ = \frac{\text{Opposite}}{\text{Adjacent}}$$

$$\frac{1}{\sqrt{3}} = \frac{9}{x}$$

$$x = \sqrt[9]{3}$$

So, therefore we got an answer to our question that is:

$$x = \sqrt[9]{3}$$

TRIGONOMETRY – GCSE MATHS

9. Three Solved Problems

Example 1: A shed roof makes an angle of 41° with the horizontal. Given that the width of the shed is 6 m and the length of its slope is 4 m. Calculate the height of the roof.

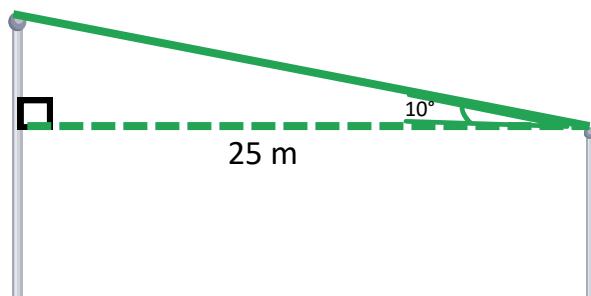
Solution:

Given:

- **Angle (θ)** = 41° (between the roof and the horizontal)
- **Slope length (L)** = 4 m (the hypotenuse of the right triangle formed by the roof)
- **Width (W)** = 6 m (total horizontal span of the shed)

The width of the shed (6 m) is the total span, but the roof slope only covers half of this (since it's a symmetrical shed roof).

$$\begin{aligned}x &= W/2 \\&= 6/2 \\&= 3 \text{ m}\end{aligned}$$


$$\begin{aligned}\sin 41^\circ &= \frac{\text{Opposite}}{\text{Hypotenuse}} \\0.6561 &= \frac{h}{4}\end{aligned}$$

$$\begin{aligned}h &= 0.6561 \times 4 \\h &= 2.624 \text{ m}\end{aligned}$$

The height of the roof is approximately **2.624 meters**.

TRIGONOMETRY – GCSE MATHS

Example 2: A zip wire runs between two poles 45m apart. The zip wire is at an angle of 10° to the horizontal. Calculate the length of the zip wire.

Solution:

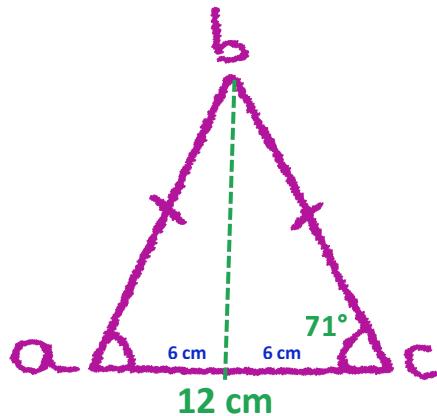
Given:

- **Angle (θ)** = 10° (between the zip wire and the length)
- **Width (W)** = 25 m (Distance between two poles)

The width of the shed (6 m) is the total span, but the roof slope only covers half of this (since it's a symmetrical shed roof).

$$\cos 10^\circ = \frac{\text{Adjacent}}{\text{Hypotenuse}}$$

$$0.9848 = \frac{25}{l}$$


$$l = \frac{25}{0.9848}$$

$$l = 25.38 \text{ m}$$

The length of the zip wire is approximately 25.38 meters.

TRIGONOMETRY – GCSE MATHS

Example 3: Triangle ABC is an isosceles. Calculate the height of the given triangle.

Solution:

Given:

- **Angle (θ)** = 71° (between the two sides)
- **Side length** = 12 cm (Distance between two poles)

The width of the shed (6 m) is the total span, but the roof slope only covers half of this (since it's a symmetrical shed roof).

$$\begin{aligned} x &= W/2 \\ &= 6/2 \\ &= 3 \text{ m} \end{aligned}$$

$$\begin{aligned} \tan 71^\circ &= \frac{\text{Opposite}}{\text{Adjacent}} \\ 2.9042 &= \frac{h}{6} \end{aligned}$$

$$h = 17.4 \text{ cm}$$

The height of the triangle ABC is approximately **17.4 centimeters**.