

Contents

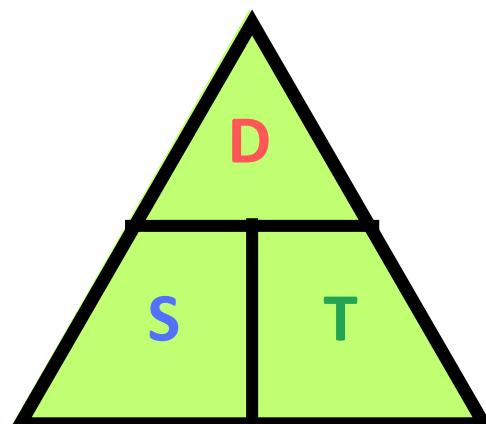
1. Introduction
2. Easy Way to Solve Problems
3. Step by Step Solved Example
4. Reasoning Problems

1. Introduction

- When we calculate a quantity using other quantities then it is called a **Compound Measure** which represents the **relationship between these quantities and the units used**.
- The Compound Measures are denoted as Ratio or **Rate** such as “per” unit (km/h, m/s etc.).
- **Examples** include- Speed, Density and Pressure.
- These Measures are widely used in Business, Engineering and Science and solving real-life problems.

Compound Measures - GCSE Maths

2. Easy Way to Solve Problems

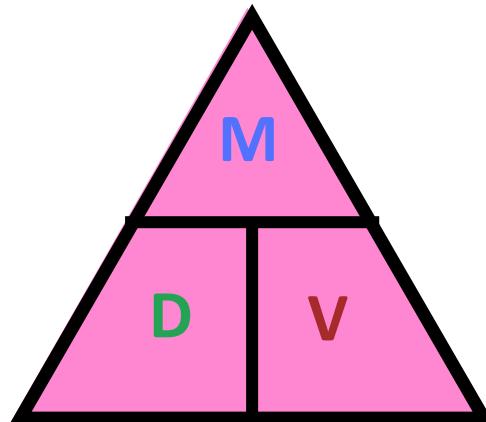

- We can make it easy to solve the problems related to Compound Measures by learning the Triangle method.
- Consider following three Compound Measures -

$$\text{Speed} = \frac{\text{Distance}}{\text{Time}}$$

Units: Speed: m/s or km/h

Distance: m or km

Time: h or sec

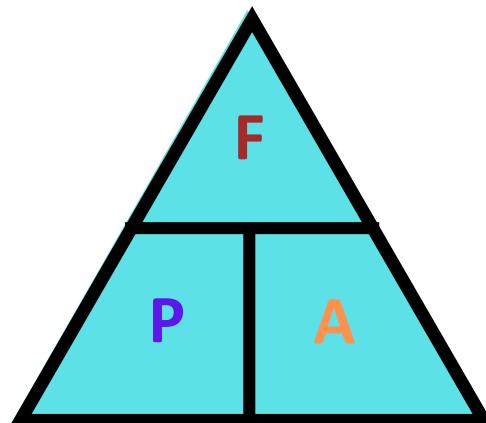


$$\text{Density} = \frac{\text{Mass}}{\text{Volume}}$$

Units: Density: g/cm³ or kg/m³

Mass: g or kg

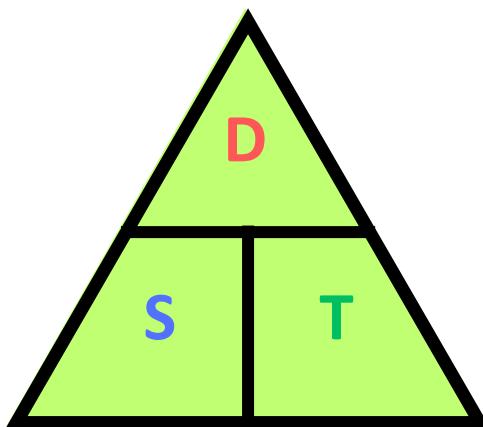
Volume: cm³ or m³



$$\text{Pressure} = \frac{\text{Force}}{\text{Area}}$$

Units: Pressure: N/m²

Force: N (Newton)


Area: m²

Compound Measures - GCSE Maths

How to Use Triangle Method?

- Let us see the use of triangle to find one quantity if the other two are known.

D = Distance
S = Speed
T = Time

- To find Speed:** Hide Speed in the Triangle, formula for calculating Speed is -

$$\text{Speed} = \frac{\text{Distance}}{\text{Time}}$$

- To find Distance:** Hide Distance in the Triangle, formula for Distance is -

$$\text{Distance} = \text{Speed} \times \text{Time}$$

- To find Time:** Hide Time in the Triangle, formula for Time is -

$$\text{Time} = \frac{\text{Distance}}{\text{Speed}}$$

Compound Measures - GCSE Maths

3. Step by Step Solved Examples

(1) Example: If a distance of 50m is travelled in 10 seconds then what is the speed of the vehicle?

Solution: Formula:

$$\text{Speed} = \frac{\text{Distance}}{\text{Time}}$$

Substituting the known values -

$$\text{Speed} = \frac{50}{10}$$

$$\text{Speed} = 5\text{m/sec}$$

(2) Example: If mass of a liquid is 1kg and the volume is 200cm^3 , then find out its Density.

Solution: Formula:

$$\text{Density} = \frac{\text{Mass}}{\text{Volume}}$$

Substituting the known values -

We know that $1\text{kg} = 1000\text{g}$;

$$\text{Density} = \frac{1000}{200}$$

$$\text{Density} = 5\text{g/cm}^3$$

Compound Measures - GCSE Maths

(3) Example: If Olivia runs at a speed of 20km/h, then how far will she run in 5 hours?

Solution: Formula:

$$\text{Distance} = \text{Speed} \times \text{Time}$$

Substituting the known values -

$$\text{Distance} = (20 \times 5)\text{km}$$

$$\text{Distance} = 100\text{km}$$

(4) Example: Suppose a block of 100cm^2 area is lying on the table and Peter starts lifting it with force of 10N. Then find our the Pressure applied in the process?

Solution: Formula -

$$\text{Pressure} = \frac{\text{Force}}{\text{Area}}$$

Substituting the known values -

$$\text{Pressure} = \frac{100}{10}$$

$$\text{Pressure} = 10\text{N/m}^2$$

4. Reasoning problems

(1) Suppose a train travels with the speed of **100km/h** and the distance between two stations **(A to B)** is **400 meters** and third station **(from B to C)** is **500 meters** then find out the total time taken by the train to travel the distance from **first to third station(A to C)**?

Solution:

First we need to convert the units of speed which are in km/h into m/sec by multiplying it with $\frac{5}{18}$ --

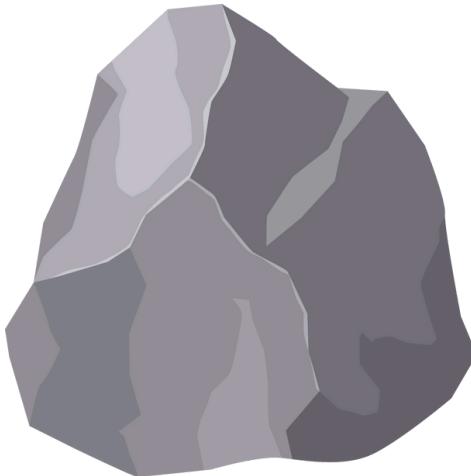
$$\text{Speed} = (100 \times \frac{5}{18}) \text{m/sec}$$

$$\text{Speed} = 27.78 \text{ m/sec}$$

Total distance from A to C is -

distance from A to B + distance from B to C

$$800 + 1400 = 2200 \text{ meters}$$


$$\text{Time} = \frac{\text{Distance}}{\text{Speed}}$$

$$\text{Time} = \frac{2200}{27.78}$$

$$\text{Time} = 79.1 \text{ seconds}$$

Compound Measures - GCSE Maths

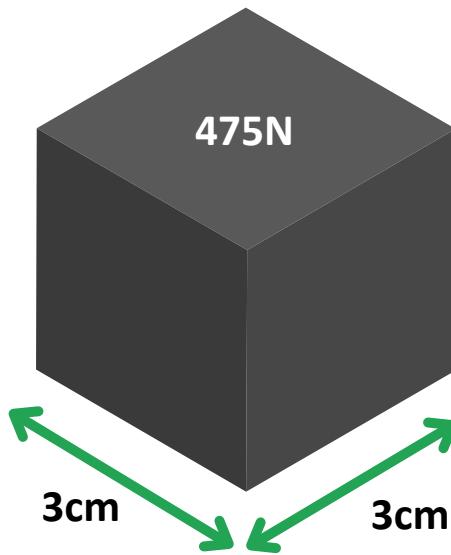
(2) A rock weighs **18g** and its volume is found to be **24cm³**, then find out the **density** of the rock?

Solution: The mass and volume of the rock are given as -

Mass = 18g, Volume = 24cm³

The formula to find density of rock -

$$\text{Density} = \frac{\text{Mass}}{\text{Volume}}$$


Substituting the known values -

$$\text{Density} = \frac{18}{24}$$

$$\text{Density} = 0.75\text{g/cm}^3$$

Compound Measures - GCSE Maths

(3) Calculate the pressure exerted by the block shown in diagram ?

Solution:

$$\text{Pressure} = \frac{\text{Force}}{\text{Area}}$$

(a) The force applied by block is 475N and area -

$$\text{Area} = 6 \times (\text{side})^2$$

$$\text{Area} = 6 \times (3)^2$$

$$\text{Area} = 54\text{cm}^2 = 0.0054\text{m}^2$$

$$\text{Pressure} = \frac{\text{Force}}{\text{Area}}$$

$$\text{Pressure} = \frac{475\text{N}}{0.0054\text{m}^2}$$

$$\boxed{\text{Pressure} = 87963 \text{ N/m}^2}$$