

# Qualitative Analysis: Tests for Ions – GCSE Chemistry

## CONTENTS:

1. Introduction
2. What is a Flame Test?
3. How do we test for Cations?
4. How do we test for Anions?
5. How does a Flame Photometer work?
6. FAQs

## 1. Introduction

- Qualitative analysis is used in chemistry to identify unknown ions by observing their specific colours, reactions, or precipitates.
- Each ion must have a unique test because if two ions gave the same result, it would be impossible to know which one is present.
- In this blog, we are going to study different tests, which are useful in water testing, environmental studies, medical labs, and industry.

## 2. What is a Flame Test?

- This is a simple method used in chemistry to identify metal ions based on the colour they produce when heated in a flame.
- When metal ions are heated, their electrons absorb energy and move to higher energy levels.
- As the electrons return to their original levels, they release energy in the form of visible light.
- The colour of the flame depends on the type of metal ion present.

# Qualitative Analysis: Tests for Ions – GCSE Chemistry

## How it is done:

- A clean wire loop made of platinum or nichrome is dipped into the sample solution.
- It is then held in the blue part of a Bunsen burner flame.
- The flame colour is then carefully observed to see which metal ion is present.

## *Common flame colours:*

- Lithium ( $\text{Li}^+$ ): Crimson red
- Sodium ( $\text{Na}^+$ ): Bright yellow
- Potassium ( $\text{K}^+$ ): Lilac
- Calcium ( $\text{Ca}^{2+}$ ): Orange-red
- Copper ( $\text{Cu}^{2+}$ ): Green



Lithium



Sodium



Potassium



Calcium



Copper

# Qualitative Analysis: Tests for Ions – GCSE Chemistry

## 3. How do we test for Cations?

- Compounds that contain transition metals often have distinct colours.
- When two chemicals are reacted together and a new solid form that does not dissolve in the solution, this is called a **precipitation reaction**.
- In solutions, compounds can dissociate into ions, and the positive ions are called **cations**.

### How it is done:

- A dilute solution of sodium hydroxide (NaOH) can be used to test for certain metal ions.
- It can also help identify ammonium ions by producing characteristic reactions when added to the solution.

### *Common results:*

| Cation                          | Reaction with NaOH                                  | Observation                |
|---------------------------------|-----------------------------------------------------|----------------------------|
| Copper ( $\text{Cu}^{2+}$ )     | Blue precipitate                                    | Copper(II) hydroxide forms |
| Iron (II) ( $\text{Fe}^{2+}$ )  | Green precipitate                                   | Iron(II) hydroxide forms   |
| Iron (III) ( $\text{Fe}^{3+}$ ) | Brown precipitate                                   | Iron(III) hydroxide forms  |
| Aluminium ( $\text{Al}^{3+}$ )  | White precipitate (dissolves in excess NaOH)        | Aluminium hydroxide        |
| Calcium ( $\text{Ca}^{2+}$ )    | White precipitate (doesn't dissolve in excess NaOH) | Calcium hydroxide          |

## Qualitative Analysis: Tests for Ions – GCSE Chemistry

### 4. How do we test for Anions?

- Anions are negatively charged ions, such as carbonates ( $\text{CO}_3^{2-}$ ), sulfates ( $\text{SO}_4^{2-}$ ), and halides ( $\text{Cl}^-$ ,  $\text{Br}^-$ ,  $\text{I}^-$ ).
- Each has a specific chemical test:

#### 1. Carbonate Ions ( $\text{CO}_3^{2-}$ ):

- To test for carbonate ions, add a few drops of dilute acid such as hydrochloric acid to the sample.
- If effervescence is seen, it shows that carbon dioxide gas is being released.
- To confirm this, the gas is passed through limewater, which turns cloudy or milky, proving the gas is carbon dioxide and confirming the presence of carbonate ions.

#### 2. Sulfate Ions ( $\text{SO}_4^{2-}$ ):

- To test for sulfate ions, add dilute hydrochloric acid followed by a few drops of **barium chloride solution ( $\text{BaCl}_2$ )**.
- If sulfate ions are present, a white insoluble precipitate of **barium sulfate ( $\text{BaSO}_4$ )** will form.
- The acid is added first to remove any carbonate ions that could give a false white precipitate.
- The formation of this white solid confirms that sulfate ions are present in the solution.

#### 3. Halide Ions ( $\text{Cl}^-$ , $\text{Br}^-$ , $\text{I}^-$ ):

- To test for halide ions, first add dilute nitric acid to the sample, then add a few drops of silver nitrate solution ( $\text{AgNO}_3$ ).
- Depending on the halide present, different coloured insoluble precipitates will form: white for chloride ( $\text{AgCl}$ ), cream for bromide ( $\text{AgBr}$ ), and yellow for iodide ( $\text{AgI}$ ).

## Qualitative Analysis: Tests for Ions – GCSE Chemistry

- The nitric acid helps remove carbonate ions that might interfere with the result, and the colour of the precipitate confirms which halide ion is present.

| Ion                                                                                          | Reagent Added                                   | Positive Result                                                               | Conclusion                                             |
|----------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------|
| <b>Carbonate (<math>\text{CO}_3^{2-}</math>)</b>                                             | Dilute acid $\rightarrow$ gas through limewater | Effervescence; limewater turns milky                                          | $\text{CO}_2$ released $\rightarrow$ Carbonate present |
| <b>Sulfate (<math>\text{SO}_4^{2-}</math>)</b>                                               | Dilute HCl + $\text{BaCl}_2$                    | White precipitate                                                             | Sulfate present                                        |
| <b>Halides (<math>\text{Cl}^-</math>, <math>\text{Br}^-</math>, <math>\text{I}^-</math>)</b> | Dilute $\text{HNO}_3$ + $\text{AgNO}_3$         | White ( $\text{Cl}^-$ ), Cream ( $\text{Br}^-$ ), Yellow ( $\text{I}^-$ ) ppt | Halide identified                                      |

## Qualitative Analysis: Tests for Ions – GCSE Chemistry

### 5. How does a Flame photometer work?


- A Flame photometer is an instrumental method used to identify and measure metal ions in a solution.

#### How it is worked:

- A sample is heated in a flame, and the light it emits is passed through a spectroscope, producing a spectrum — a pattern of coloured lines.
- Each element gives off light at specific wavelengths, creating a unique spectrum like a fingerprint.
- This helps scientists identify metal ions accurately, even in mixtures where one metal's colour might hide another in a normal flame test.

#### *Determining Concentrations:*

- A Flame photometer can measure the light intensity for solutions with different known concentrations of a metal ion.
- These readings are used to create a **calibration curve**.



## Qualitative Analysis: Tests for Ions – GCSE Chemistry

- Once the curve is made, scientists can easily determine the concentration of an unknown sample by comparing its reading to the graph.
- Example:** If a solution of sodium ions gave a reading of 5 units on the flame photometer, then the calibration curve allows us to read off that the sample had a concentration of  $0.025 \text{ g/dm}^3$ .

# Qualitative Analysis: Tests for Ions – GCSE Chemistry

## 6. FAQs

### 1. What is a flame test?

A flame test is a method used to identify metal ions by the colour they produce in a flame.

### 2. Why do different metal ions give different flame colours?

Because electrons in metal ions absorb energy, move to a higher level, and release energy as light when they return — each metal emits specific wavelengths.

### 3. Which metal ions can be identified using a flame test?

Common ones include lithium (red), sodium (yellow), potassium (lilac), calcium (orange-red), and copper (green).

### 4. How do we test for cations?

Cations (positively charged ions) are tested using sodium hydroxide (NaOH) or ammonia (NH<sub>3</sub>) to form coloured precipitates.

### 5. Can you give an example of a cation test?

Yes — Cu<sup>2+</sup> + NaOH → blue precipitate (copper hydroxide) or Fe<sup>3+</sup> + NaOH → brown precipitate (iron hydroxide).

### 6. How do we test for anions?

Anions (negatively charged ions) are tested using specific chemical reactions:

- Carbonates → fizz with acid
- Sulfates → white precipitate with barium chloride
- Halides → coloured precipitate with silver nitrate

## Qualitative Analysis: Tests for Ions – GCSE Chemistry

### 7. Why do we use instrumental methods of analysis?

Because they are fast, accurate, and can detect small amounts of substances better than simple chemical tests.

### 8. What are examples of instrumental methods?

Examples include flame photometry, spectroscopy, chromatography, and mass spectrometry.

### 9. How does a flame photometer work?

A sample is sprayed into a flame, emitting light. The light is split into a spectrum, and the intensity shows the concentration of metal ions.

### 10. Why is a flame photometer better than a normal flame test?

Because it can measure the amount of metal ions, separate colours in a mixture, and give a unique spectrum for each element — even in mixtures.