
#### **CONTENTS:**

- 1. Introduction.
- 2. Magnetism facts and uses of Magnets.
- 3. What is the working of Motor Effect?
- 4. What do you mean by Generator Effect?
- 5. Differentiate between Motor and Generator.
- 6. FAQs

#### 1. Introduction

Magnetism is a natural force produced by the movement of electric charges, especially electrons. It creates an invisible region around a magnetic object called a magnetic field, which can attract or repel certain materials, mainly iron, cobalt, and nickel.

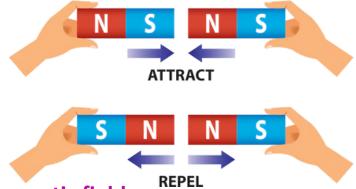
- Every magnet has two ends known as poles the north pole and the south pole. Like poles repel each other, while opposite poles attract.
- Magnetism plays a key role in many everyday devices, including compasses, speakers, and electric motors. It is also closely linked to electricity, as moving charges can produce magnetic effects.



## 2. Magnetism facts and uses of Magnets.

## **Magnetism**

Magnetism is a physical force caused by the motion of electric charges. It creates a magnetic field that can attract or repel certain materials, especially metals like iron. Magnetism is widely used in devices like compasses, motors, and generators.


#### **FACTS ABOUT MAGNETISM**

### Magnetism comes from moving charges

 When electric charges (like electrons) move, they create a magnetic field around them.

#### Like poles repel, unlike poles attract

- Two north or two south poles push away from each other, while a north and south pole pull toward each other.



#### Earth has its own magnetic field

 The Earth behaves like a huge magnet, with a magnetic north and south pole. This is why compasses point north.

## Only certain materials are magnetic

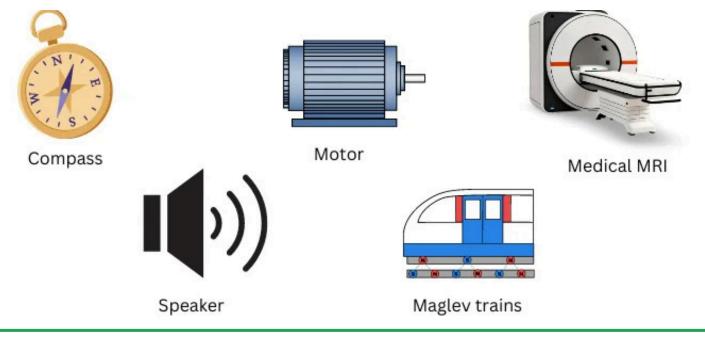
 Metals like iron, cobalt, and nickel can be attracted by magnets. Other materials like wood or plastic are not affected.

## For more Topics Visit <u>myexamrevision.com</u>

## **MAGNETISM AND MOTOR EFFECT – GCSE PHYSICS**

#### **USES ABOUT MAGNETISM**

#### **Electric Motors**


Magnetism is used to create motion in electric motors. When an
electric current flows through a coil inside a magnetic field, it
experiences a force (motor effect) that makes it spin. This principle is
used in fans, washing machines, mixers, and electric vehicles.

#### **Generators**

 Generators use magnetism to produce electricity. When a coil of wire moves within a magnetic field, it generates an electric current. This is how electricity is produced in power stations using turbines and magnets.

#### **Magnetic Storage Devices**

Hard drives and some types of memory use magnetism to store data.
 Information is written and read using tiny magnetic fields that represent binary data (0s and 1s).



## 3. What is the working of Motor Effect?

## **Introduction:**

An **Electric motor** is a device that changes electrical energy into mechanical motion (movement). It works using the motor effect, which is the force that acts on a wire carrying current in a magnetic field.

Before discussing the principle, let us understand the Rule first.

## Fleming's Left-Hand

Fleming's Left-Hand Rule helps us find the direction of motion (force) in an electric motor.

It is used when:

A current flows through a wire

• The wire is placed in a magnetic field

Stretch out your left hand with the:

- Thumb pointing up
- First finger (index) pointing forward
- Second finger (middle) pointing sideways

# SeCond FINGER = CURRENT Copyright Classe My Lasers, All Rights Reserved

### **Example**

If a wire carrying current is placed in a magnetic field, use your left hand like this:

- First finger → magnetic field (from North to South)
- Second finger → direction of current
- Thumb → the direction the wire will move

This rule helps in designing and understanding how electric motors work.

## For more Topics Visit myexamrevision.com

## **MAGNETISM AND MOTOR EFFECT – GCSE PHYSICS**

## **Key Principle:**

Fleming's Left-Hand Rule helps predict the direction of motion in the motor.

## **Working:**

An electric motor is a device that converts electrical energy into mechanical energy (motion). It works based on the motor effect, where a current-carrying wire in a magnetic field experiences a force.

## **Main Parts of an Electric Motor**

## • Armature (Coil)

- A coil of wire that carries current.
- Placed in the magnetic field and rotates when current flows.

## Magnet (Field Magnet)

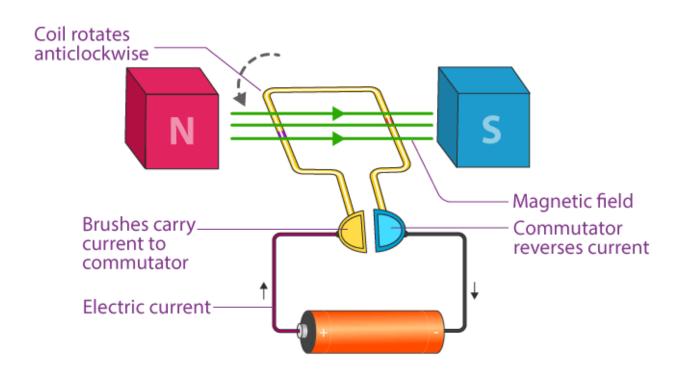
- Provides a magnetic field (can be permanent or electromagnets).
- Helps create the force that turns the coil.

#### Commutator

- A split ring that reverses the current direction in the coil every half turn.
- This keeps the armature rotating in the same direction.

#### Brushes

 Made of carbon, they maintain contact with the rotating commutator and supply current from the battery to the armature.


#### Battery or Power Supply

Provides the electric current needed to operate the motor.

## **Step-by-Step Working of a Motor:**

- When the motor is powered, current flows through the coil (armature).
- 2. The coil is inside a magnetic field, so the motor effect causes one side to move up and the other side to move down.
- 3. This creates a rotating force, causing the coil to spin.
- 4. The commutator reverses the current in the coil after half a turn, so the rotation continues in the same direction.
- 5. This spinning motion can be used to do mechanical work (like turn a fan or rotate a wheel).

# **Diagram of Electric Motor**



# 4. What do you mean by Generator Effect?

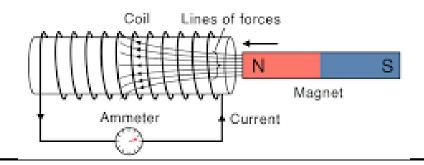
## **Introduction:**

The Generator Effect is the process of generating electricity by moving a conductor (like a wire or coil) through a magnetic field. This movement causes an electric current to be induced in the wire.

Before discussing the principle, let us understand the Rule first.

## Faraday's Law used in a Generator

Faraday's Law of Electromagnetic Induction states:


A voltage (or electromotive force) is induced in a coil when it experiences a change in magnetic field. The faster the change, the greater the induced voltage.

Mathematically:

EMF (voltage) = 
$$-N \frac{d\Phi}{dt}$$

#### where:

- EMF = induced voltage
- N = number of turns in the coil
- Φ (phi) = magnetic flux
- dΦ/dt = rate of change of magnetic flux



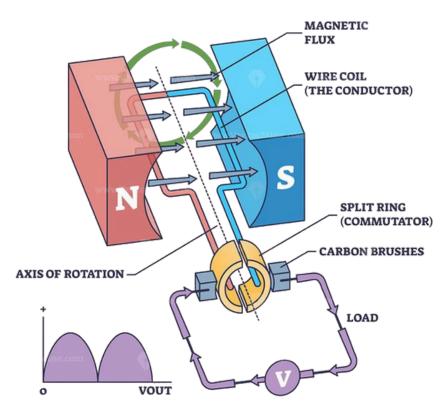
## For more Topics Visit <u>myexamrevision.com</u>

## **MAGNETISM AND MOTOR EFFECT – GCSE PHYSICS**

## **Key Principle:**

The generator effect is based on Faraday's Law of Electromagnetic Induction, which states:

"Whenever a conductor cuts through a magnetic field or the magnetic field around a conductor changes, a voltage (electromotive force) is induced. If the circuit is complete, current will flow".


## **Main Parts of a Generator**

- Coil (Conductor)
  - A loop or winding of wire, usually copper, where current is induced.
- Magnet
  - Provides the magnetic field. It can be a permanent magnet or an electromagnet.
- Motion (Mechanical Energy)
  - Either the coil or the magnet is moved to create relative motion between the magnetic field and the coil.
- Slip Rings and Brushes (in AC generators)
  - Used to transfer the generated current from the rotating coil to the external circuit.
- Commutator (in DC generators)
  - Used to reverse the current direction every half turn so the output remains in one direction.

## **Step-by-Step Working of a Generator:**

- Relative Motion: The coil is rotated inside a magnetic field, or the magnet is moved near a stationary coil.
- Cutting Magnetic Field Lines: As the wire moves across the magnetic field, it cuts through the magnetic lines of force.
- Induction of Voltage: This motion induces a voltage (also called electromotive force) in the wire.
- Flow of Current: If the coil is part of a closed circuit, the induced voltage causes electric current to flow.
- Direction of Current: The direction of the induced current depends on the direction of movement and the magnetic field (can be found using Fleming's Right-Hand Rule).

# **Diagram of Generator**



## 5. Differentiate between Motor and Generator.

| FEATURE                 | ELECTRIC MOTOR                                    | ELECTRIC GENERATOR                                     |
|-------------------------|---------------------------------------------------|--------------------------------------------------------|
| FUNCTION                | Converts electrical energy into mechanical energy | Converts mechanical energy into electrical energy      |
| WORKING<br>PRINCIPLE    | Based on the Motor Effect                         | Based on Faraday's Law of<br>Electromagnetic Induction |
| ENERGY INPUT            | Takes in electricity                              | Takes in mechanical motion                             |
| ENERGY OUTPUT           | Produces movement (rotation)                      | Produces electric current                              |
| KEY PART                | Commutator (for direction control)                | Slip rings or commutator (depending on AC/DC type)     |
| EXAMPLE<br>DEVICES      | Fans, mixers, electric cars                       | Power stations, wind turbines, dynamos                 |
| DIRECTION OF<br>CURRENT | Supplied from a power source                      | Induced by moving the coil<br>or magnet                |

## For more Topics Visit <u>myexamrevision.com</u>

## **MAGNETISM AND MOTOR EFFECT – GCSE PHYSICS**

# 7. FAQs (Frequently Asked Questions)



#### 1. What is a magnetic field?

A magnetic field is the invisible area around a magnet where magnetic forces can be felt. It is shown using field lines going from the north to the south pole.

#### 2. What rule helps us find the direction of force in a motor?

Fleming's Left-Hand Rule helps us predict the direction of the force (motion) in an electric motor.

#### 3. Is the Earth a magnet?

Yes! The Earth has a magnetic field with a north and south pole, which helps guide compasses.

#### 4. Can magnetic poles exist alone?

No. You cannot have just one magnetic pole. If you cut a magnet in half, both pieces will still have a north and south pole.

#### 5. Why do motors need a commutator?

A commutator reverses the direction of current in the coil every half turn so that the motor keeps spinning in one direction.

#### 6. What is Fleming's Right-Hand Rule?

Fleming's Right-Hand Rule helps to predict the direction of induced current in a generator.

- Thumb = Motion
- First finger = Magnetic field
- Second finger = Current