CONTENTS:

- 1. Introduction
- 2. What do you mean by Standard Form.
- 3. Why do we use Standard Form.
- 4. Converting into Standard Form
- 5. Addition and Subtraction in Standard Form.
- 6. Multiplication and Division in Standard Form.
- 7. Solved problems related to Standard Form.

1. Introduction:

Standard form is a widely accepted way of representing mathematical expressions, numbers, or equations in a clear and structured manner

2. What do you mean by Standard Form

• **Standard form** is a universally recognized way of expressing mathematical concepts with clarity, precision, and consistency.

• It can be written in the form

where,

- a is any constant which lies between 1 and 9 i.e {1<a<10}
- n can be any positive or negative whole number

Examples: These are some of the conversions to their respective Standard Forms.

3. Why do we use Standard Form

We use **Standard Form** because it makes numbers and equations easier to read, compare, and work with. Here's a brief breakdown of why it's useful:

1. Simplifies Large or Small Numbers – As we can simply write

450000000
$$+.5 \times 10^6$$

0.00098
 $+.8 \times 10^{-4}$

0.000048
 $+.8 \times 10^{-5}$

- **2. Comparision is quicker** -Numbers in standard form make it easier to compare magnitudes without counting zeroes.

4. Converting into Standard Form

There are mainly two types of numbers that can be converted in **Standard Form**Steps to convert a number to Standard Form:

Converting a Large Number:

Problem: Convert 640,000 to standard form.

Solution:

Step #1:Place the decimal after the first non-zero digit.

- The number is 640000, so place the decimal after 6.4
- This gives 6.4

Step #2: Count the number of places the decimal moved.

- The original decimal in 640000.0 moves 5 places to the left.
- So, the exponent is 5.

Step #3: Write the number in standard form:

 (6.4×10^5)

Converting a Small Number:

Problem: Convert 0.0072 to standard form.

Solution:

Step #1:Place the decimal after the first non-zero digit.

• The number is 0.0072, so place the decimal after 7.2.

Step #2:Count the number of places the decimal moved.

The original decimal in 0.0072 moves 3 places to the right.

So, the exponent is -3.

Step #3: Write the number in standard form:

 (7.2×10^{-3})

5. Addition in Standard Form

Addition can be performed in Standard Form by this procedure:

Steps for Addition in Standard Form:

Step #1: Make sure both of the numbers have the same power of 10.

Step #2: Adjust one number accordingly so that both exponents match.

Step #3: Add the coefficients while keeping the power of 10 the same.

Step#4: Convert the result back into standard form (if necessary).

Example 1: Adding Numbers with the Same Power of 10

Problem: $4.3 \times 10^3 + 3.9 \times 10^3$

Solution:

Step #1: Both numbers have 10³, so just add the coefficients:

4.3 + 3.9 = 7.2

Step #2: Keep the same power of 10:

 (7.2×10^3)

Example 2: Adding Numbers with Different Powers of 10

Problem:

$$4.2 \times 10^5 + 5.1 \times 10^3$$

Solution:

Step #1: Convert both numbers to the same power of 10.

 5.1×10^3

can be written as

 0.051×10^{5}

Step #2: Now add the coefficients:

4.2 + 0.051 = 4.251

Step #3: Keep the power of 10:

 4.251×10^{3}

6. Subtraction in Standard Form

Subtraction can also be performed in Standard Form by the given procedure:

Steps for Subtraction in Standard Form:

Step #1: Make sure both of the numbers have the same power of 10.

Step #2: Adjust one number accordingly so that both exponents match.

Step #3: Subtract the coefficients while keeping the power of 10 the same.

Step #4: Convert the result back into standard form (if necessary).

Example 1: Subtracting Numbers with the Same Power of 10

Problem: $(6.8 \times 10^3) - (2.5 \times 10^3)$

Solution:

Step #1: Both numbers have 10³, so just subtract the coefficients:

$$6.8 - 2.5 = 4.3$$

Step #2: Keep the same power of 10³:

 4.3×10^{3}

Example 2: Subtracting Numbers with Different Powers of 10

Problem: $(7.5 \times 10^6) - (3.2 \times 10^4)$

Solution:

Step #1: Convert both numbers to the same power of 10.

• 3.2×10^4 can be written as 0.032×10^6

Step #2: Now subtract the coefficients:

$$7.5 - 0.032 = 7.468$$

Step #3: Keep the power of 10:

 7.468×10^6

7. Multiplication in Standard Form

Case 1: Multiplication with adjustments

Problem: $(4.5 \times 10^5) \times (2.0 \times 10^2)$

Solution:

Step #1: Multiply the coefficients:

$$4.5 \times 2.0 = 9.0$$

Step #2: Add the exponents:

$$10^5 \times 10^7 = 10^{(2+5)} = 10^7$$

= 9.0 x 10⁷

Case 2: Multiplication when the coefficient is greater than 10

Problem: $(6.2 \times 10^3) \times (5.0 \times 10^2)$

Solution:

Step #1: Multiply the coefficients:

$$6.2 \times 5.0 = 31.0$$

Step #2: Add the exponents:

$$10^3 \times 10^2 = 10^{(3+2)} = 10^5$$

Step #3: The coefficient is greater than 10, so adjust:

$$= 3.1 \times 10^6$$

8. Division in Standard Form

Case 1: Simple Division

Problem: $(6 \times 10^8) \div (2 \times 10^6)$

Solution:

Step #1: Divide the coefficients:

$$6 \div 2 = 3$$

Step #2: Subtract the exponents:

$$10^8 \div 10^4 = 10^{(8-4)} = 10^4$$

Step #3: It comes out to be

$$= 3 \times 10^4$$

Case 2: When the Coefficient is Less than 1

Problem: $(4.5 \times 10^3) \div (9.0 \times 10^5)$

Solution:

Step #1: Divide the coefficients:

$$4.5 \div 9.0 = 0.5$$

Step #2: Subtract the exponents:

$$10^3 \div 10^5 = 10^{(3-5)} = 10^{-2}$$

Step #3: It comes out to be

$$= 5 \times 10^{-3}$$

Step #3: Adjust to standard form:

- 0.5×10⁻² is not in standard form (the coefficient should be between 1 and 10
- Convert 0.50 to 5.0×10⁻¹, then adjust:
- It can be written as

=
$$(5.0 \times 10^{-1}) \times 10^{-2}$$

= 5×10^{-3}

SOLVED EXAMPLES

Problem: Convert 567,000,000 to standard form.

Solution:

Step #1: Place the decimal after the first non-zero digit: **5.67**

Step #2: Count how many places the decimal moves: 8 places to the left

Step #3: Write in standard form:

 $= 5.67 \times 10^{8}$

Problem: Convert 0.000042 to standard form.

Solution:

Step #1: Place the decimal after the first non-zero digit: 4.2

Step #2: Count how many places the decimal moves: 5 places to the right

Step #3: Write in standard form:

 $= 4.2 \times 10^{5}$

Problem: $(3.2 \times 10^4) + (4.5 \times 10^3)$

Solution:

Step #1: Convert 4.5×10^3 to match the power of 10^4

$$= 0.45 \times 10^4$$

Step #2: Add the coefficients:

$$(3.2 + 0.45) = 3.65$$

Step #3: Keep the power of 10⁴

$$= 3.65 \times 10^4$$