CONTENTS:

- 1. Introduction
- 2. What is a Cone?
- 3. What is a Pyramid?
- 4. How to Find the Volume of Cones and Pyramids?
- 5. How to Find the Surface Area of Cones and Pyramids?

1. Introduction

- **Cones** and **Pyramids** are three-dimensional (3D) geometric shapes that play essential role in mathematics, architecture, engineering, and everyday life.
- Both shapes have a base and an apex, but they differ in structure and properties.
- Real life Examples:

2. What is a Cone?

- A cone is a solid figure with a circular base that curves upward to meet at a single vertex, forming a pointed tip.
- Key Features of a Cone:
 - Base A circular flat surface.
 - Apex The pointed top where all the sides meet.
 - Height (h) The perpendicular distance from the base to the apex.
 - Slant Height (I) The distance from the apex to any point on the edge of the base.
 - Radius (r) The distance from the center of the base to its edge.

3.What is a Pyramid?

- A **Pyramid** is a three-dimensional geometric shape with a polygonal base and triangular faces that meet at a common point called the apex.
- Key Features of a Pyramid:
 - **Base** A polygon (e.g., triangle, square, pentagon, etc.).
 - Apex The topmost point where all triangular faces meet.
 - Faces Triangular sides connecting the base to the apex.
 - Edges The line segments where two faces meet.
 - Height (h) The perpendicular distance from the base to the apex.
 - Slant Height (I) The height of a triangular face from the base to the apex.

4. How to Find the Volume of Cones and Pyramids?

• Volume is the amount of space occupied by an object.

Volume of a Cone:

- A cone has a circular base and tapers to apex.
- The formula for its volume is:

Volume = $\frac{1}{3}$ x Base Area x Vertical height Volume = $\frac{1}{3}$ x πr^2 x h

Where,

- r = Radius of the base
- **h** = Height (perpendicular distance from the base to the apex)
- **π** ≈ 3.1416 (pi)

Steps to Calculate Volume:

Step#1: Measure the radius (r) of the circular base.

Step#2: Measure the height (h) of the cone.

Step#3: Plug the values into the formula:

$$V = \frac{1}{3} \times \pi r^2 \times h$$

Step#4: Compute the result.

Volume of a Pyramid:

- A **Pyramid** has a polygonal base (e.g., square, triangle) and triangular faces that meet at an apex.
- The formula for its volume is:

Volume = $\frac{1}{3}$ x Base Area x Vertical height Volume = $\frac{1}{3}$ x B x h

Where,

- **B** = Area of the base
- **h** = Height (perpendicular distance from the base to the apex)

Steps to Calculate Volume:

Step#1: Find the area (B) of the base (depends on the base shape):

- Square base: B= side²
- Rectangular base: B= length × width
- Triangular base: $B=\frac{1}{2} \times base \times height$

Step#2: Measure the height (h) of the pyramid.

Step#3: Plug the values into the formula:

Volume =
$$\frac{1}{3} \times B \times h$$

Step#4: Compute the result.

Solved Examples

Problem1: Find the volume of a cone with radius 6 cm and height 10 cm. Use $\pi \approx 3.14$

Solution:

Step#1: Find the Radius and Height of the Cone,

• **r** = 6cm

Step#2: Plug the Values into the formula,

Volume = $\frac{1}{3} \times \pi r^2 \times h$

Volume =
$$\frac{1}{3}$$
 x (3.14) (6²) x 10

Step#3: Compute the result,

Volume =
$$\frac{1}{3}$$
 x (3.14) (36) x 10

Volume =
$$\frac{1}{3} \times 113.04 \times 10$$

Volume =
$$\frac{1}{3} \times 1130.4$$

Volume = 376.8 cm^{3}

The Volume is **376.8 cm³**

For more Topics Visit myexamrevision.com

Pyramid and Cones – GCSE Maths

Problem2: Find the volume of a pyramid with a square base of side length 9 meters and a height of 12 meters.

Solution:

Step#1: Find the Area of the base,

Since the base is a square:

Base Area= 9 × 9 = 81 m²

Step#2: Plug the Values into the formula,

Volume = $\frac{1}{3} \times B \times h$

Volume =
$$\frac{1}{3} \times 81 \times 12$$

Step#3: Compute the result,

Volume =
$$\frac{1}{3} \times 81 \times 12$$

Volume =
$$\frac{1}{3} \times 972$$

Volume =
$$324 \text{ m}^3$$

The volume is 324 m³

5. How to Find the Surface Area of Cones and Pyramids?

• Surface area is the Total Area of all the surfaces (faces, bases, and curved sides) that cover a 3D object.

Surface area of a Cone:

- It includes:
 - Base area (a circle)
 - Lateral surface area (the curved side)
- Formula:

Surface Area = Base Area + Lateral Area

Where,

- **Base Area** = πr^2 (where r=radius)
- **Lateral Area** = $\pi r \ell$ (where ℓ =slant height)

Steps to Calculate Surface Area:

Step#1: Identify Given Values.

Step#2: Find the Base Area

Step#3: Find the Lateral (Curved) Surface Area.

Step#4: Calculate Total Surface Area.

Surface Area of a Pyramid:

- It includes:
 - A base (which can be a square, triangle, rectangle, etc.)
 - Triangular lateral faces (number depends on the base shape)
- Formula:

Surface Area = Base Area + Lateral Area

Where,

- Lateral Area = $\frac{1}{2}$ × Perimeter of Base × ℓ
- **e**= Slant height

Steps to Calculate Surface Area:

Step#1: Identify Given Values.

Step#2: Find the Base Area

- Square base: Area=s² (side length s)
- Triangular base: Area= $\frac{1}{2}bh$ (base b, height h)
- Rectangular base: Area= *lw* (length *l*, width *w*)

Step#3: Find the lateral area.

Step#4: Calculate Total Surface Area.

For more Topics Visit myexamrevision.com

Pyramid and Cones – GCSE Maths

Solved Examples

Problem1: A cone has a radius of 5 cm and a slant height of 13 cm. Calculate its total surface area. Using $\pi \approx 3.14$

Solution:

Step#1: Identify Given Values,

- Radius (r) = 5 cm
- Slant height (?) = 13 cm

Step#2: Find the Base Area,

The base is a circle, so its area is:

Base Area = $\pi r^2 = \pi (5)^2 = 25\pi \text{ cm}^2$

Step#3: Find the Lateral (Curved) Surface Area

The lateral area of a cone is given by:

Lateral Area = $\pi r \ell = \pi (5)(13) = 65\pi \text{ cm}^2$

Step#4: Calculate Total Surface Area,

Surface Area = Base Area + Lateral Area

Surface Area = $25\pi + 65\pi$

Surface Area = 90π = 90×3.14 = 282.6 cm^2

The Surface Area is **282.6 cm²**

For more Topics Visit myexamrevision.com

Pyramid and Cones – GCSE Maths

Problem2: A square pyramid has a base side length of 6 m and a slant height of 5 m. Find its total surface area.

Solution:

Step#1: Identify Given Values,

- Base side length (s) = 6m
- Slant height (?) = 5m

Step#2: Find the Base Area,

The base is a square, so its area is:

Base Area = s^2 = (6)² = 36 m²

Step#3: Find the Lateral (Curved) Surface Area

A square pyramid has 4 triangular faces.

Lateral Area = $\frac{1}{2}$ × Perimeter of Base × ℓ

Where,

Perimeter of Base = $4s = 4 \times 6 = 24$ m

Now,

Lateral Area =
$$\frac{1}{2}$$
 × 24 × 5 = 60 m²

Step#4: Calculate Total Surface Area,

Surface Area = Base Area + Lateral Area

Surface Area = $36 + 60 = 96 \text{ m}^2$

The Surface Area is **96 m²**