CONTENTS:

- 1. Introduction
- 2. What is Speed and How is it Measure?
- 3. Speed, Distance and Time Triangle.
- 4. What is a Distance-Time Graph?
- 5. How to Calculate Speed from Distance-Time Graph?
- 6. FAQs

1. Introduction:

- Motion is the change in position of an object with respect to time.
- The three fundamental quantities that describe Motion are:

Distance

Time

Speed

- **Distance:** It is the total path length covered by an object, regardless of direction.
- Time: It is the duration over which Motion occurs.
- **Speed:** It tells us how fast an object moves.

2. What is Speed and How is it Measure?

- **Speed** is the measure of how fast an object moves.
- It defined as the distance traveled per unit of time.
- It is a Scalar Quantity.
- Speed can be measured using the formula:

$$Speed = \frac{Distance}{Time}$$

Common SI Units:

- Meters per second (m/s)
- Kilometers per hour (km/h)
- Miles per hour (mph)

Example: If a bike travels 150 meters in 10 seconds, what's the speed of bike?

Solution:

Given: • Distance: 150 m

• Time Taken: 10s

Using the formula,

$$Speed = \frac{Distance}{Time}$$

Putting the values and solve,

$$Speed = \frac{150}{10} = 15 \text{ m/s}$$

So, the speed of the bike is 15 meters per second (m/s)

3. Speed, Distance and Time Triangle:

- The **Speed**, **Distance** and **Time Triangle** is an easy way to remember the relationship between speed, distance, and time.
- It helps in calculating one quantity when the other two are known.

- D= Distance
- S= Speed
- T= Time

How to use Triangle:

• To Find Speed: Cover "S" and the formula is,

$$Speed = \frac{Distance}{Time}$$

• To Find Distance: Cover "D" and the formula is,

$$Distance = Speed \times Time$$

• To Find Time: Cover "T" and the formula is,

$$Time = rac{Distance}{Speed}$$

4. What is a Distance-Time Graph?

- A **Distance-Time Graph** is a graphical representation of how distance changes over time.
- It helps visualize the motion of an object.

Features of a Distance-Time Graph:

- X-axis (Horizontal) → Represents **Time** (seconds, minutes, hours).
- Y-axis (Vertical) → Represents **Distance** (meters, kilometers).
- Slope of the Graph → Represents **Speed**.

Distance-Time graphs for various types of body motion:

- In Distance-Time Graph, the **Gradient** of the line at any point tell us the **Speed** of the object is travelling.
- · Mathematically,

For Stationary BodySpeed = 0

• For Uniform Motion

Speed = Change in Distance
Change in Time

For Non-Uniform MotionSpeed = Increasing

For Non-Uniform MotionSpeed = Decreasing

5. How to Calculate Speed from Distance-Time Graph?

Steps to Calculate Speed from the Graph:

Step#1: Observe the Graph.

Step#2: Identify Two Points on the Graph.

Step#3: Find the Change in Distance (Δd).

Step#4: Find the Change in Time (Δt).

Step#5: Calculate the Speed using formula,

$$Speed = egin{array}{c} \Delta d \ \overline{\Delta t} \end{array}$$

 Case 1: For Stationary body, it observed that the object is not moving. Since distance remains the same over time, Δd=0.

- Case 2: For Uniform body, the graph is a straight line and the speed is constant.
- Case 3: For Non-Uniform body, speed varies over time, so find instantaneous speed by calculating the slope of the tangent at a given point.

If Curved upwards → Acceleration (speed increasing).

If Curved downwards → Deceleration (speed decreasing).

Example:

Problem: The distance-time graph of an object shows a slope at 20 meters for 4 seconds. What is the speed of the object?

Solution:

Step#1: Observe the Graph,

The Body is in Uniform Motion.

Step#2: Identify Two Points on the Graph,

- At t_1 =0s, d_1 =0m.
- At t_2 =4s, d_2 =20m.

Step#3: Change in Distance (Δd),

$$\Delta d = 20m - 0m = 20m$$

Step#4: Change in Time (Δt).

$$\Delta t = 4s - 0s = 4s$$

Step#5: Calculate the Speed,

Speed =
$$\frac{20}{4}$$
 = 5m/s

Speed is 5m/s.

Example:

Problem: The Distance-Time Graph of an object shows a flat horizontal line at 5 meters for 10 seconds. What is the speed of the object?

Solution:

Step#1: Observe the Graph,

The line is horizontal in the graph, so Distance does not change over time.

Step#2: Identify Two Points on the Graph,

- At t_1 =0s, d_1 =5m.
- At t_2 =10s, d_2 =5m.

Step#3: Change in Distance (Δd),

$$\Delta d = 5m - 5m = 0m$$

Step#4: Change in Time (Δt).

$$\Delta t = 10s - 0s = 10s$$

Step#5: Calculate the Speed,

Speed =
$$\frac{0}{10}$$
 = 0m/s

Speed is 0m/s.

7. FAQs:

Q1. How to calculate speed from a distance time graph?

Use the formula: Speed = Distance ÷ Time. On a graph, calculate the slope by dividing the vertical change (distance) by the horizontal change (time).

Q2. How to find the distance in a velocity time graph?

Calculate the area under the graph line. Use basic shapes like rectangles and triangles to measure the area, which gives you the distance.

Q3. What does a horizontal line on a distance-time graph mean?

It means the object is stationary — it is not moving.

Q4. What does a steeper line mean on a distance time graph?

A steeper line shows a higher speed — the object is moving faster.

Q5. Can distance-time graphs show changes in speed?

Yes, when the slope changes or becomes curved (not shown in this example), it indicates acceleration or deceleration.

Q6. What's the difference between distance-time and velocity-time graphs?

- Distance-time graph: Shows how far something has travelled
- Velocity-time graph: Shows how fast it's moving area under graph = distance.

Q7. How do I improve at reading graphs for exams?

Practice regularly, look at real exam questions, and use worksheets. Pay attention to axes labels, slope changes, and units.