CONTENTS:

- 1. Introduction
- 2. What are Reverse Percentages?
- 3. How Reverse Percentage is different from Original Percentage?
- 4. Steps to Solve Reverse Percentages
- 5. Solved Examples

1. Introduction

Reverse Percentage also known as "**Reverse Percent**" is a mathematical operation that involves finding the original value or quantity from which a percentage was calculated.

2. What are Reverse Percentages?

- Reverse percentage is a mathematical concept which is used to find or determine the original value before the percentage **increase** or **decrease**.
- Start with the final amount after a percentage change and work backward to find the original number.
- If you know the final value **after** a percentage change, reverse percentages help you find the original value **before** the change.

Formula used in Reverse Percentages:

original value =
$$\frac{\text{Final value}}{1 \pm \frac{\text{percentage}}{100}}$$

Example:

Problem: A TV now costs **£300** after a **25%** increase. What was its original price?

Solution:

Step#1: Given,

- New value = **£300**
- Percentage increased = **25%**

Step#2: Applying the formula,

original value =
$$\frac{\text{Final value}}{1 \pm \frac{\text{percentage}}{100}}$$

Step#3: Put the values in formula,

original value =
$$\frac{300}{1 + \frac{25}{100}}$$

Step#4: Simplify the denominator,

$$=1+\frac{25}{100}=1+0.25$$

Step#5: The final value is ,

original value =
$$\frac{300}{1.25} = \frac{300 \times 100}{125}$$

original value =
$$\frac{30000}{125}$$
 = 240

The original price of TV was **£240.**

3. How Reverse Percentage is Different From Original Percentage?

Original Percentages:

- It is use when we know the original number or value and want to calculate a percentage of it.
- If original price of shirt is £100 then after 20% increase, the new price will be £120.

Reverse Percentages:

- It is use when we know the final value after a percentage change and want to find the original value.
- After a 20 % increase, the new price of a shirt is £120 then the original price of a shirt was £100.

4. Steps to Solve Reverse Percentages.

Step#1: Understand the Question

Check the new value is increased or decreased after the change of original value:

• If the final value is after a **percentage increase**, **the formula is:**

original value =
$$\frac{\text{Final value}}{1 + \frac{\text{percentage}}{100}}$$

• If the final value is after a **percentage decrease, the formula is:**

original value =
$$\frac{\text{Final value}}{1 - \frac{\text{percentage}}{100}}$$

Step#2: Work out what percentage you now have.

Step#3: Solve the equation

- We know the original equivalent percentage for all the process is 100%.
- Use this to find the 1% of original price or value.

Step#4: Now multiply the 1% with 100% to get the original value or price.

Note: To solve this easily, we should also know the concept of Original *Percentages.*

5. Solved Examples

Problem 1: A jacket costs £60 after a 20% discount. What was the original
price?
Solution:
Step #1: Given,
 New value = £60
 Percentage increased = 20%
Step #2: Applying the formula,
Final value = Final value
1 ± percentage
100 Step#3: Put the values in formula,
original value = $\frac{60}{1 - \frac{20}{100}}$
Step#4: Simplify the denominator,
$= 1 - \frac{20}{100} = 1 - 0.20$
= 0.80
Step#5: The final value is ,
original value = $\frac{60}{0.80} = \frac{60 \times 100}{80}$
original value = <u>6000</u> =75 80
The original price of jacket was £75.

For more Topics Visit myexamrevision.com

Reverse Percentages – GCSE Maths

Problem2: A product costs **£120** including **20%** VAT. What was the price before tax?

Solution:

Step #1: Given,

- New value = £120
- Percentage increased = 20%

Step #2: Applying the formula,

original value =
$$\frac{\text{Final value}}{1 \pm \frac{\text{percentage}}{100}}$$

Step#3: Put the values in formula,

original value =
$$\frac{120}{1 + \frac{20}{100}}$$

Step#4: Simplify the denominator,

$$=1+\frac{20}{100}$$
 = 1 + 0.2

Step#5: The final value is ,

original value =
$$\frac{120}{1.2} = \frac{120 \times 10}{12}$$

original value =
$$\frac{1200}{12}$$
 =100

The original price of product was **£100.**

For more Topics Visit myexamrevision.com

Reverse Percentages – GCSE Maths

Problem3: A house increased in value by 15% and is now worth £230,000. What was its original price? Solution: Step #1: Given, • New value = £230,000 Percentage increased = 15% Step #2: Applying the formula, original value = $\frac{\text{Final value}}{1 \pm \frac{\text{percentage}}{100}}$ Step#3: Put the values in formula, original value = $\frac{230000}{1 + \frac{15}{15}}$ Step#4: Simplify the denominator, $=1+\frac{15}{100}=1+0.15$ = 1.15Step#5: The final value is, original value = $\frac{230000}{1.15}$ = $\frac{230000 \times 100}{115}$ original value = $\frac{23000000}{115}$ = 200000 The original price of house was **£200,000**.