Surds Simplified | Explained with Examples

Surds

In this article, we will explore

  • What are Surds
  • How to Simplified surds

We will also delve into how to multiply and divide surds, tackle some hard exam questions on surds, and provide practice questions with answers to solidify your understanding.

They are very important in practicing questions for Algebra as well.

Here is one more link to practice a few extra questions: Maths Genie Surds Simplified Questions

What Are Surds?

  • A surd is an irrational root of a rational number that cannot be simplified to remove the radical (square root) symbol.
  • Surds are exact values and are left in root form because their decimal expansions are non-repeating and non-terminating.

Examples of Surds:

โˆš3

โˆš12

โˆš50

These cannot be simplified to whole numbers or fractions, so they remain under the square root symbol.

Approximate Decimal Values:

โˆš3 โ‰ˆ 1.732

Remember, the surd (e.g., โˆš3) is the exact value, while the decimal is an approximation.

Simplifying Surds

  • Simplifying surds involves expressing the surd in its simplest form by extracting square factors.

Steps to Simplify a Surd:

  1. Factorize the Number Inside the Surd into its prime factors.
  2. Identify Pairs of Factors: For every pair of identical factors, one factor can be taken out of the square root.
  3. Simplify the Expression: Multiply the factors outside the radical and leave the remaining factors inside.

certified Physics and Maths tutor

ย 

ย 

Solved Example 1

Question: Simplify โˆš50

Solution:ย 

Step 1: Prime Factorization

50 = 2 ร— 5 ร— 5

Step 2: Identify Pairs

  • Pair of 5s.

Step 3: Simplify

โˆš50 = โˆš(2 ร— 5 ร— 5)

  • Take one 5 out:

5โˆš2

Simplified Surd: 5โˆš2

Multiplying Surds

Multiply surds by multiplying the numbers inside the radicals.

Rule:

โˆša ร— โˆšb = โˆš(a ร— b)

Example:

โˆš5 ร— โˆš3 = โˆš(5 ร— 3) = โˆš15

Note: You cannot multiply a surd by a regular integer under the radical.

2 ร— โˆš5 โ‰  โˆš(2 ร— 5)

  • It remains as 2โˆš5

Dividing Surds

Divide surds by dividing the numbers inside the radicals.

Rule:ย 

โˆša รท โˆšb = โˆš(a รท b)

Example:

โˆš20 รท โˆš2 = โˆš(20 รท 2) = โˆš10

Note: You cannot divide a surd by a regular integer under the radical.

โˆš14 รท 2 remains as (โˆš14) / 2

certified Physics and Maths tutor

ย 

ย 

Solved Example 2

Question: Simplify โˆš72

Solution:ย 

Step 1: Prime Factorization

72 = 2 ร— 2 ร— 2 ร— 3 ร— 3

Step 2: Identify Pairs

  • Pair of 2s
  • Pair of 3s

Step 3: Simplify

โˆš72 = โˆš(2 ร— 2 ร— 2 ร— 3 ร— 3)

  • Take out one 2 and one 3:

2 ร— 3 = 6

  • Remaining inside the radical: 2

Simplified Surd: 6โˆš2

certified Physics and Maths tutor

ย 

ย 

Solved Example 3

Question: Simplify -5โˆš60

Solution:ย 

Step 1: Prime Factorization

60 = 2 ร— 2 ร— 3 ร— 5

Step 2: Identify Pairs

  • Pair of 2s

Step 3: Simplify

-5โˆš60 = -5โˆš(2 ร— 2 ร— 3 ร— 5)

  • Take out one 2:

-5 ร— 2 = -10

  • Remaining inside the radical: 3 ร— 5 = 15

Simplified Surd: -10โˆš15

certified Physics and Maths tutor

ย 

ย 

Solved Example 4

Question: Simplify -4โˆš200

Solution:ย 

Step 1: Prime Factorization

200 = 2 ร— 2 ร— 2 ร— 5 ร— 5

Step 2: Identify Pairs

  • Pair of 2s
  • Pair of 5s

Step 3: Simplify

-4โˆš200 = -4โˆš(2 ร— 2 ร— 2 ร— 5 ร— 5)

  • Take out one 2 and one 5:

-4 ร— 2 ร— 5 = -40

  • Remaining inside the radical: 2

Simplified Surd: -40โˆš2

Exam Questions on Surds

certified Physics and Maths tutor

ย 

ย 

Solved Example 5

Question: Simplify โˆš98

Solution:ย 

Step 1: Prime Factorization

98 = 2 ร— 7 ร— 7

Step 2: Identify Pairs

  • Pair of 7s

Step 3: Simplify

โˆš98 = โˆš(7 ร— 7 ร— 2)

  • Take out one 7:

7โˆš2

Simplified Surd: 7โˆš2

certified Physics and Maths tutor

ย 

ย 

Solved Example 6

Question: Simplify 3โˆš45

Solution:ย 

Step 1: Prime Factorization

45 = 3 ร— 3 ร— 5

Step 2: Identify Pairs

  • Pair of 3s

Step 3: Simplify

3โˆš45 = 3โˆš(3 ร— 3 ร— 5)

  • Take out one 3:

3 ร— 3 = 9

  • Remaining inside the radical: 5

Simplified Surd: 9โˆš5

Simplifying Surds Questions

certified Physics and Maths tutor

ย 

ย 

Solved Example 7

Question: Simplify โˆš18 + โˆš8

Solution:ย 

Step 1: Simplify โˆš18

18 = 2 ร— 3 ร— 3

โˆš18 = 3โˆš2

Step 2: Simplify โˆš8

8 = 2 ร— 2 ร— 2

โˆš8 = 2โˆš2

Step 3: Add the Simplified Terms

3โˆš2 + 2โˆš2 = 5โˆš2

Simplified Surd: 5โˆš2

certified Physics and Maths tutor

ย 

ย 

Solved Example 8

Question: Simplify (โˆš3)ยฒ

Solution:

Step 1: Write the Expression as a Product

(โˆš3)ยฒ = โˆš3 ร— โˆš3

Step 2: Use the Property of Square Roots

โˆš3 ร— โˆš3 = 3

Simplified Surd: 3

Multiply Surds Questions

certified Physics and Maths tutor

ย 

ย 

Solved Example 9

Question: Simplify โˆš6 ร— โˆš14

Solution:

Step 1: Use the Product Property of Square Roots

  • Combine the square roots:

โˆš6 ร— โˆš14 = โˆš(6 ร— 14)

Step 2: Multiply Inside the Square Root

6 ร— 14 = 84

  • so we have:

โˆš6 ร— โˆš14 = โˆš84

Step 3: Prime Factorization

84 = 2 ร— 2 ร— 3 ร— 7

Step 4: Identify Pairs

  • Pair of 2s

Step 5: Simplify

โˆš84 = โˆš(2 ร— 2 ร— 3 ร— 7)

  • Take out one 2:

2โˆš21

Simplified Surd: 2โˆš21

certified Physics and Maths tutor

ย 

ย 

Solved Example 10

Question: Simplify (2โˆš5)(3โˆš10)

Solution:

Step 1: Multiply the Coefficients

  • Multiply the numbers outside the square roots:

2 ร— 3 = 6

  • This gives us:

(2โˆš5)(3โˆš10) = 6โˆš(5 ร— 10)

Step 2: Multiply Inside the Square Root

  • Multiply the numbers inside the square root:

5 ร— 10 = 50

So we have:

6โˆš50

Step 3: Simplify โˆš50 Using Prime Factorization

50 = 2 ร— 5 ร— 5

Step 4: Identify Pairs

  • Pair of 5s

Step 5: Simplify

โˆš50 = โˆš(2 ร— 5 ร— 5)

  • Take out one 5:

6 ร— 5โˆš2 = 30โˆš2

Simplified Surd: 30โˆš2

Dividing Surds

certified Physics and Maths tutor

ย 

ย 

Solved Example 11

Question: Simplify โˆš80 รท โˆš5

Solution:

Step 1: Use the Product Property of Square Roots

  • Combine the square roots:

โˆš80 รท โˆš5 = โˆš(80 รท 5)

Step 2: Divide Inside the Square Root

  • Calculate 80 รท 5:

80 รท 5 = 16

  • Now we have:

โˆš80 รท โˆš5 = โˆš16

Step 3: Simplify โˆš16

  • Since 16 is a perfect square:

โˆš16 = 4

Simplified Surd: 4

certified Physics and Maths tutor

ย 

ย 

Solved Example 12

Question: Simplify (6โˆš18) รท (3โˆš2)

Solution:

Step 1: Divide the Coefficients

  • Divide the numbers outside the square roots:

6 รท 3 = 2

  • This gives us:

(6โˆš18) รท (3โˆš2) = 2(โˆš18 รท โˆš2)

Step 2: Use the Quotient Property of Square Roots

  • Rewrite โˆš18 รท โˆš2 as a single square root:

โˆš18 รท โˆš2 = โˆš(18 รท 2)

Step 3: Divide Inside the Square Root

  • Calculate

18 รท 2 = 9

  • So we have:

โˆš(18 รท 2) = โˆš9

Step 4: Simplify โˆš9

  • Since 9 is a perfect square:

โˆš9 = 3

Step 5: Multiply the Result Now substitute back:

2 ร— 3 = 6

Simplified Surd: 6

Conclusion

  • Understanding how to simplify surds, multiply surds, and divide surds is essential for solving various mathematical problems, especially those that appear in exams. By mastering these concepts and practicing with hard questions, you can enhance your mathematical skills and confidence.

Practice Questions and Answers on Surds

Question 1: Simplify โˆš75

Question 2: Simplify 2โˆš27 + 3โˆš12

Question 3: Simplify (โˆš8) ร— (โˆš2)

Question 4: Simplify โˆš125 รท โˆš5

Question 5: Simplify 4โˆš45 โˆ’ 2โˆš20

Question 6: Simplify (โˆš3)ยณ

Question 7: Simplify โˆš32

Question 8: Simplify (5โˆš2)(2โˆš8)

Question 9: Simplify โˆš18 รท โˆš2

Question 10: Simplify 3โˆš50 + 2โˆš8

Solutions

Question 1: Simplify โˆš75

Step 1: Prime Factorize 75

75 = 25 ร— 3 = 5 ร— 5 ร— 3

Step 2: Identify Pairs

  • We have a pair of 5’s.

Step 3: Simplify

  • Take one 5 out of the square root:

โˆš75 = 5โˆš3

Answer: 5โˆš3

ย 

Question 2: Simplify 2โˆš27 + 3โˆš12

Step 1: Simplify Each Square Root

  • For โˆš27: 27 = 9 ร— 3, so โˆš27 = โˆš(9 ร— 3) = 3โˆš3
  • For โˆš12: 12 = 4 ร— 3, so โˆš12 = โˆš(4 ร— 3) = 2โˆš3

Step 2: Multiply by the Coefficients

  • 2โˆš27 = 2 ร— 3โˆš3 = 6โˆš3.
  • 3โˆš12 = 3 ร— 2โˆš3 = 6โˆš3.

Step 3: Combine Like Terms

6โˆš3 + 6โˆš3 = 12โˆš3

Answer: 12โˆš3

ย 

Question 3: Simplify (โˆš8) ร— (โˆš2)

Step 1: Use the Product Property of Square Roots

โˆš8 ร— โˆš2 = โˆš(8 ร— 2) = โˆš16

Step 2: Simplify the Square Root

โˆš16 = 4

Answer: 4

ย 

Question 4: Simplify โˆš125 รท โˆš5

Step 1: Use the Quotient Property of Square Roots

โˆš125 รท โˆš5 = โˆš(125 รท 5) = โˆš25

Step 2: Simplify the Square Root

โˆš25 = 5

Answer: 5

ย 

Question 5: Simplify 4โˆš45 โˆ’ 2โˆš20

Step 1: Simplify Each Square Root

  • For โˆš45: 45 = 9 ร— 5, so โˆš45 = โˆš(9 ร— 5) = 3โˆš5
  • For โˆš20: 20 = 4 ร— 5, so โˆš20 = โˆš(4 ร— 5) = 2โˆš5

Step 2: Multiply by the Coefficients

  • 4โˆš45 = 4 ร— 3โˆš5 = 12โˆš5
  • 2โˆš20 = 2 ร— 2โˆš5 = 4โˆš5

Step 3: Subtract Like Terms

12โˆš5 โˆ’ 4โˆš5 = 8โˆš5

Answer: 8โˆš5

ย 

Question 6: Simplify (โˆš3)ยณ

Step 1: Rewrite as a Product of Square Roots

(โˆš3)ยณ = โˆš3 ร— โˆš3 ร— โˆš3

Step 2: Simplify Pairs of Square Roots

  • Combine two of the โˆš3 terms:

โˆš3 ร— โˆš3 = 3

  • Now we have 3 ร— โˆš3

Step 3: Multiply

3 ร— โˆš3 = 3โˆš3

Answer: 3โˆš3

ย 

Question 7: Simplify โˆš32

Step 1: Prime Factorize 32

32 = 2 ร— 2 ร— 2 ร— 2 ร— 2

Step 2: Identify Pairs

  • We have two pairs of 2’s.

Step 3: Simplify

Take out two 2’s from the square root:

โˆš32 = 4โˆš2

Answer: 4โˆš2

ย 

Question 8: Simplify (5โˆš2)(2โˆš8)

Step 1: Multiply the Coefficients

5 ร— 2 = 10

  • so we have:

(5โˆš2)(2โˆš8) = 10โˆš(2 ร— 8)

Step 2: Multiply Inside the Square Root

2 ร— 8 = 16

  • so we have:

10โˆš16

Step 3: Simplify โˆš16

  • Since โˆš16 = 4,
  • we get:

10 ร— 4 = 40

Answer: 40

ย 

Question 9: Simplify โˆš18 รท โˆš2

Step 1: Use the Quotient Property of Square Roots

โˆš18 รท โˆš2 = โˆš(18 รท 2) = โˆš9

Step 2: Simplify โˆš9

  • Since โˆš9 = 3,
  • we have:

โˆš18 รท โˆš2 = 3

Answer: 3

ย 

Question 10: Simplify 3โˆš50 + 2โˆš8

Step 1: Simplify Each Square Root

  • For โˆš50: 50 = 25 ร— 2, so โˆš50 = 5โˆš2
  • For โˆš8: 8 = 4 ร— 2, so โˆš8 = 2โˆš2

Step 2: Multiply by the Coefficients

  • 3โˆš50 = 3 ร— 5โˆš2 = 15โˆš2
  • 2โˆš8 = 2 ร— 2โˆš2 = 4โˆš2

Step 3: Combine Like Terms

15โˆš2 + 4โˆš2 = 19โˆš2

Answer: 19โˆš2